Electrostatic contributions of aromatic residues in the local anesthetic receptor of voltage-gated sodium channels.

نویسندگان

  • Christopher A Ahern
  • Amy L Eastwood
  • Dennis A Dougherty
  • Richard Horn
چکیده

Antiarrhythmics, anticonvulsants, and local anesthetics target voltage-gated sodium channels, decreasing excitability of nerve and muscle cells. Channel inhibition by members of this family of cationic, hydrophobic drugs relies on the presence of highly conserved aromatic residues in the pore-lining S6 segment of the fourth homologous domain of the channel. We tested whether channel inhibition was facilitated by an electrostatic attraction between lidocaine and pi electrons of the aromatic rings of these residues, namely a cation-pi interaction. To this end, we used the in vivo nonsense suppression method to incorporate a series of unnatural phenylalanine derivatives designed to systematically reduce the negative electrostatic potential on the face of the aromatic ring. In contrast to standard point mutations at the same sites, these subtly altered amino acids preserve the wild-type voltage dependence of channel activation and inactivation. Although these phenylalanine derivatives have no effect on low-affinity tonic inhibition by lidocaine or its permanently charged derivative QX-314 at any of the substituted sites, high-affinity use-dependent inhibition displays substantial cation-pi energetics for 1 residue only: Phe1579 in rNa(V)1.4. Replacement of the aromatic ring of Phe1579 by cyclohexane, for example, strongly reduces use-dependent inhibition and speeds recovery of lidocaine-engaged channels. Channel block by the neutral local anesthetic benzocaine is unaffected by the distribution of pi electrons at Phe1579, indicating that our aromatic manipulations expose electrostatic contributions to channel inhibition. These results fine tune our understanding of local anesthetic inhibition of voltage-gated sodium channels and will help the design of safer and more salutary therapeutic agents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular modeling of local anesthetic drug binding by voltage-gated sodium channels.

Voltage-gated sodium (Na+) channels are targets for local anesthetic (LA) drugs that bind in the inner pore of the channel with affinities related to the channel gating states. Our core model of the sodium channel (P loops and S5 and S6 segments from each of the four domains) was closed because it was developed using coordinates from the KcsA channel crystallographic structure. We developed a m...

متن کامل

A molecular basis for the different local anesthetic affinities of resting versus open and inactivated states of the sodium channel.

Voltage-gated sodium channels are inhibited by local anesthetic drugs. This inhibition has complex voltage- and frequency-dependent properties, consistent with a model in which the sodium channel has low affinity for local anesthetics when it is in resting states and higher affinity when it is in open or inactivated states. Two residues, a phenylalanine (F1710) and a tyrosine (Y1717), in transm...

متن کامل

Molecular Insights into the Local Anesthetic Receptor within Voltage-Gated Sodium Channels Using Hydroxylated Analogs of Mexiletine

We previously showed that the β-adrenoceptor modulators, clenbuterol and propranolol, directly blocked voltage-gated sodium channels, whereas salbutamol and nadolol did not (Desaphy et al., 2003), suggesting the presence of two hydroxyl groups on the aromatic moiety of the drugs as a molecular requisite for impeding sodium channel block. To verify such an hypothesis, we synthesized five new mex...

متن کامل

Ketamine blockade of voltage-gated sodium channels: evidence for a shared receptor site with local anesthetics.

BACKGROUND The general anesthetic ketamine is known to be an N-methyl-D-aspartate receptor blocker. Although ketamine also blocks voltage-gated sodium channels in a local anesthetic-like fashion, little information exists on the molecular pharmacology of this interaction. We measured the effects of ketamine on sodium channels. METHODS Wild-type and mutant (F1579A) recombinant rat skeletal mus...

متن کامل

Voltage-Gated Sodium Channels Modulation by Bothutous Schach Scorpion Venom

Buthotus schach is one of the dangers scorpion in Iran that belong to the Buthidae family. Toxins are existing in venom scorpion, modulate the ion channels by blocking or opening the pore of the channel or by altering the voltage gating and useful as pharmacological tools. In the present study, we investigated the effect of venom and its obtained fractions by gel filtrations on electrophysiolog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 102 1  شماره 

صفحات  -

تاریخ انتشار 2008